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Let I be the interval t-1, IJ and C(l) the linear space of all continuous,
real-valued functions defined on 1. In e(l) we consider the Tchebycheff norm
II '11 and an n-dimensional subspace U = span(ul ,... , un)' We put

V -I ( )- u(a, x) - L;~l aiuix) I ( ) 0 t' II- va, x - ( ) - n () u a, x > lor x Eu a - x " a·u· -x, £-.i=1 ~ 1,

and suppose V * cP. Here a is the vector (al p .. , an) formed by the coeffi­
cients of u(a, x) = L~~l aiui(x). Now we seek for a given /E ceI) a best
approximation with respect to V, i.e., we wish to determine an element Vo E V
such that

Ilf - Vo II :( Ilf - v II
for all v E V.

Geiger [5] considered the case in which U is the subspace 1Tn-l of all real
polynomials of degree at most n - l. Assuming u(a, x) and u(a, -x) to be
relatively prime and defining

[n-l-m]
d(a) = n - 1 - . 2 '

with m = degree of u(a, x), Geiger proved the following characterization
theorem:

v(a, x) is a best approximation to/if and only if one of the following
conditions holds:

1. 0 is an extremal point of f(x) - v(a, x).

2. There are two extremal points Xl , X 2 E I of f(x) - v(a, x) such
that Xl = -X2 and /(Xl) - v(a, Xl) = /(x2) - v(a, X2)'
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3. There are d(a) + I extremal points Xo, Xl'"'' xd(a) such that

°< IXo I < IXl I < ... < I Xd(a) I

and

sgn(xi(f(xi) - v(a, Xi» = -sgn(Xi+1(f(Xi+l) - v(a, Xi+l»

for i = 0, I, ... , d(a) - 1.
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We want to characterize best approximations of the first mentioned
problem by transforming it to a problem of approximating vector-valued
functions and using the characterization of best approximations in normed
linear spaces. We can then interpret d(a) as the dimension of the linear space
spanned by the gradient functions.

Let 10 = [0, I]. We can formulate our problem in the following way:
For a given (j1 ,J;) E C(Io) X C(Io), we seek an element v(a, x) E V such that

J(a) ~ J(b)

for all v(b, x) E V. Hereh(x) = f(x),J;(x) = fe-x) and

A(a) = max llifl - v(a, ')110, IIf2 - v(;, .) IIJ
with II . [10 = Tchebycheff norm on 10 •

For characterizing the best approximations we need the gradient of v(a, x)
with respect to the parameter a. From

we get

8v(a, x)
8ai

I
( )

[Ui(X) - u;(-x) v(a, x)]ua, -x

I
grad v(a, x) = ( ) (Ul(X) - Ul(-x) v(a, x), ... , un(x) - un(-x) v(a, x».ua, -x

Let <,) denote the scalar product of IRn ,

Mla) := {x E 10 Ilh(x) - v(a, x)1 = A(a)},

and

Mla) := Ix E 10 Ilh(X) - v(a~ x) I= J(a)!

then the following theorem holds.
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THEOREM 1. Ll achieves its minimum at a E IRn if and only if

min I min (h(x) - v(a, x))<b, grad v(a, x»,
!xEM1(a)

min ( (1 ) -fix)) <b, grad v(a, x»l :::;; 0
xEM.(a) V a, x

for every b E IRn •

Proof Observing the form of the extremal points of the unit
sphere in (C(Io) X C(Io))* (Bredendiek [1]) and grad[1/v(a, x)] =

- [I/v(a, X)2] grad v(a, x) this condition is just the local Kolmogoroff
condition, which is always necessary (Brosowski, Wegmann [3]). The set V is
asymptotically convex with the parameter function aCt) = a + t(b - a).
Hence the set of functions (v(a, '), l/v(a, .)) lying in V X V is asymptotically
convex for every component. From the chosen norm in the product space
C(Io) X C(Io) and a(O) = a we get, as did Brosowski [2] that the condition is
also sufficient.

Using the separation theorem for convex sets we obtain

THEOREM 2. Ll achieves its minimum at a E IRn if and only if the origin of
IRn lies in the convex hull of81 U 82 with

81 := {(fleX) - v(a, x)) grad v(a, x) I x E Ml(a)},

82 := 1- (J2(X) - v(a~ x) ) grad v(a, x) Ix E M 2(a)l·

Let L(a) denote the space spanned by the functions

u;(x) - Ui(-x) v(a, x) (i = I,..., n) and put

v(L(a)) = 1 + maximum number of variations in
sign possessed by elements of L(a) in (0, 1],

7](L(a)) = dimension of a maximal Haar subspace
in L(a) over (0, 1].

We say thatf - v(a, .) alternates k times if k points Xi E I exist satisfying

1. 0 < IXII < I x2 1 < '" < I Xk I·

2. If(xi) - v(a, Xi) I = Ilf - v(a, ')11.
3. sgn(xi(f(xi) - v(a, Xi)) = -sgn(xi+l(f(Xi+l) - v(a, Xi+l))

for i = 1,... , k - 1.

Then we get the following alternation theorem.
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THEOREM 3. If v(a, x) is a best approximation to f with respect to V then
one of the following conditions holds:

0:. 0 is an extremal point of f(x) - v(a, x).
f3. There are two extremal points Xl , X z E I of f(x) - v(a, x) such that

Xl = -X2 and f(x1) - v(a, Xl) = f(xz) - v(a, Xz).
y. f - v(a, .) alternates 1 + 1](L(a» times.

If one of the conditions (0:), (f3) holds or iff - v(a, .) alternates 1 + v(L(a»
times then v(a, x) is a best approximation to f

We omit the proof of this theorem because we can derive it as in the
classical theory using the theorems of Caratheodory and Goldstein (compare
Cheney [4]). The exceptional cases are immediately seen from Theorem 2.
Moreover, it is clear that the best approximation v(a, x) to fis unique if L(a)
is a Haar subspace over (0, 1] and v(a, x) is characterized by condition (y).

Now the aforementioned theorem of Geiger [5] follows from Theorem 3
considering U = 1771 _ 1 and the

LEMMA. If U = 7Tn-1 then L(a) is a Haar subspace of dimension d(a) over
any interval not containing the point O.

Proof Since

n-l

I o:;(xiu(a, -x) - (-X)i u(a, x»
i=O

is an odd polynomial of degree :(; (n - 1 + m), the function

11-1

I O:i(Xi - (-X)i v(a, x»
i~O

has at most d(a) - 1 zeros in intervals not containing O. Consider the linear
mapping

4>: 1711-1 ---+- L(a)

defined by Xi ---+- Xi - (-X)i v(a, x) for i = 0, 1,..., n - 1. Hence we conclude

dim L(a) = dim 1711- 1 - dim(ker 4».

From the equivalent relations

11-1 "-1 11-1

p(x) = I O:iXi E ker 4> -¢> L O:iXi = v(a, x) I O:i(-X)i
i=O i~O i=O

-¢> p(x) = u(a, x) . rex) with even rex)
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we get:
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[
n-l-m]

dim(ker 4» = 2 + 1.

Thus we obtain dim L(a) = d(a).
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